首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
  国内免费   1篇
化学   23篇
晶体学   1篇
力学   2篇
数学   55篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
Given a holomorphic foliation of the 2-dimensional projective space, sufficient conditions are given in order to be the pull back of a linear foliation by a rational map.  相似文献   
22.
23.
We propose a collection of hybrid methods combining Newton’s method with frozen derivatives and a family of high-order iterative schemes. We present semilocal convergence results for this collection on a Banach space setting. Using a more precise majorizing sequence and under the same or weaker convergence conditions than the ones in earlier studies, we expand the applicability of these iterative procedures.  相似文献   
24.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   
25.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   
26.
We provide a local convergence analysis for Newton–Steffensen-type algorithm for solving nonsmooth perturbed variational inclusions in Banach spaces. Under new center–conditions and the Aubin continuity property, we obtain the linear local convergence of Newton–Steffensen method. Our results compare favorably with related obtained in (Argyros and Hilout, 2007 submitted; Hilout in J. Math. Anal. Appl. 339:753–761, 2008).  相似文献   
27.
We present new results for the local convergence of the Newton-like method to a unique solution of nondifferentiable variational inclusions in a Banach space setting using the Lipschitz-like property of set-valued mappings and the concept of slant differentiability hypothesis on the operator involved, as was introduced by X. Chen, Z. Nashed and L. Qi. The linear convergence of the Newton-like method is also established. Our results extend the applicability of the Newton-like method (Argyros and Hilout, 2009 [5] and Chen, Nashed and Qi, 2000 [7]) to variational inclusions.  相似文献   
28.
We introduce the new idea of recurrent functions to provide a semilocal convergence analysis for an inexact Newton-type method, using outer inverses. It turns out that our sufficient convergence conditions are weaker than in earlier studies in many interesting cases (Argyros, 2004 [5] and [6], Argyros, 2007 [7], Dennis, 1971 [14], Deuflhard and Heindl, 1979 [15], Gutiérrez, 1997 [16], Gutiérrez et al., 1995 [17], Häubler, 1986 [18], Huang, 1993 [19], Kantorovich and Akilov, 1982 [20], Nashed and Chen, 1993 [21], Potra, 1982 [22], Potra, 1985 [23]).  相似文献   
29.
We introduce a new iterative method in order to approximate a locally unique solution of variational inclusions in Banach spaces. The method uses only divided differences operators of order one. An existence–convergence theorem and a radius of convergence are given under some conditions on divided difference operator and Lipschitz-like continuity property of set-valued mappings. Our method extends the recent work related to the resolution of nonlinear equation in Argyros (J Math Anal Appl 332:97–108, 2007) and has the following advantages: faster convergence to the solution than all the previous known ones in Argyros and Hilout (Appl Math Comput, 2008 in press), Hilout (J Math Anal Appl 339:53–761, 2008, Positivity 10:673–700, 2006), and we do not need to evaluate any Fréchet derivative. We provide also an improvement of the ratio of our algorithm under some center-conditions and less computational cost. Numerical examples are also provided.   相似文献   
30.
We present a Kantorovich-type semilocal convergence analysis of the Newton–Josephy method for solving a certain class of variational inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer error bounds on the distances involved, and an at least as precise information on the location of the solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号